ON GENERALIZED n-INNER PRODUCT SPACES

نویسندگان

  • Renu Chugh
  • Sushma Lather
چکیده

(i) ∥x1, x2, . . . , xn∥ = 0 if any only if x1, x2, . . . , xn are linearly dependent, (ii) ∥x1, x2, . . . , xn∥ is invariant under any permutation, (iii) ∥x1, x2, . . . , axn∥ = |a| ∥x1, x2, . . . , xn∥, for any a ∈ R (real), (iv) ∥x1, x2, . . . , xn−1, y + z∥ = ∥x1, x2, . . . , xn−1, y∥ + ∥x1, x2, . . . , xn−1, z∥ is called an n-norm on X and the pair (X, ∥•, . . . , •∥) is called n-normed linear space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Systems in 2-inner Product Spaces

In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.

متن کامل

NORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS

In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

متن کامل

On Generalized Injective Spaces in Generalized Topologies

In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...

متن کامل

Ja n 20 09 Semi - indefinite - inner - product and generalized Minkowski spaces

In this paper we parallelly build up the theories of normed linear spaces and of linear spaces with indefinite metric, called also Minkowski spaces for finite dimensions in the literature. In the first part of this paper we collect the common properties of the semi-and indefinite-inner-products and define the semi-indefinite-inner-product and the corresponding structure, the semi-indefinite-inn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011